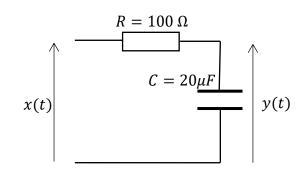
TD BTS SN RESOLUTION NUMERIQUE D'UNE EQUATION DIFFERENTIELLE

Exercice 1 : Filtre Passe bas de type RC

Une tension x(t) est appliquée en entrée d'un filtre analogique. En écrivant les lois électriques, on peut démontrer que la tension de sortie y(t) est la solution de l'équation différentielle suivante :

$$0.002 y'(t) + y(t) = x(t)$$



On désire réaliser un équivalent numérique de ce filtre. Le signal x(t) est échantillonné avec une fréquence d'échantillonnage $f_e=1\ 000Hz$ pour constituer une suite x_n . En sortie de filtre, on retrouve une suite y_n .

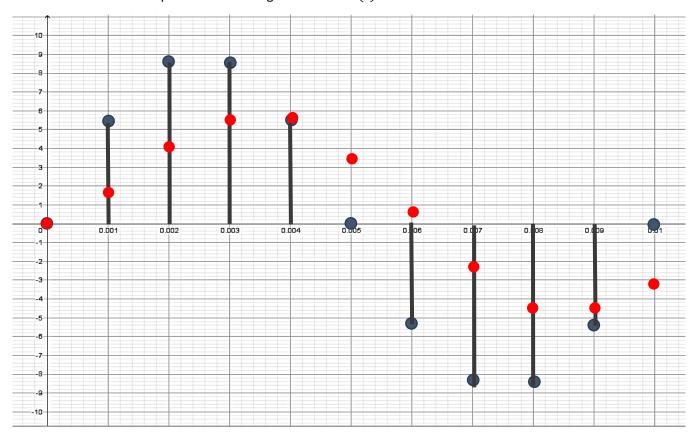
On suppose que la tension d'entrée est sinusoïdale de fréquence 100 Hz : $x(t) = 9 \sin(2\pi \times 100t)$

1- Calculer la période d'échantillonnage T_e et compléter les lignes t et x_n du tableau ci-dessous :

$$T_e = \frac{1}{f_e} = \frac{1}{1000} = 0,001 \, s$$

n	-1	0	1	2	3	4	5	6	7	8	9	10
$t = n T_e$		0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009	0,010
x_n	0	9 sin (0)	9 sin (0,628) 5,3	9 sin (1,257) 8,6	9 sin (1,885) 8,6	9 sin (2.513) 5,3	9 sin (3,142)	9 sin (3,770) -5,3	9 sin (4,398) -8,6	9 sin (5,027) -8,6	9 sin (5,655) -5,3	9 sin (6,283)
y_n	0											

2- Tracer la courbe représentative du signal d'entrée x(t)



3- Déterminer l'équation de récurrence permettant de calculer $\,y_n$ en fonction de y_{n-1} et x_n

L'E.D. est :
$$0.002 y'(t) + y(t) = x(t)$$

En travaillant sur les signaux échantillonnés :

$$0.002 \ \frac{(y_n - y_{n-1})}{0.001} + \ y_n = x_n$$

Ce qui donne:

$$\frac{0.002}{0.001}(y_n - y_{n-1}) + y_n = x_n$$

$$2(y_n - y_{n-1}) + y_n = x_n$$

$$2 y_n - 2 y_{n-1} + y_n = x_n$$

$$3 y_n - 2 y_{n-1} = x_n$$

$$3 y_n = x_n + 2 y_{n-1}$$

Et finalement:

$$y_n = \frac{x_n + 2 y_{n-1}}{3}$$

4- Détailler le calcul de y_0 , y_1 et y_2 en arrondissant toujours les valeurs au dixième. Pour n=0: $y_0=\frac{x_0+2}{3}=\frac{0+2\times 0}{3}=0$

Pour
$$n = 0$$
: $y_0 = \frac{x_0 + 2y_{-1}}{3} = \frac{0 + 2 \times 0}{3} = 0$

Pour
$$n = 1$$
: $y_1 = \frac{x_1 + 2y_0}{3} = \frac{5.3 + 2 \times 0}{3} \approx 1.8$

Pour
$$n = 2$$
: $y_2 = \frac{x_2 + 2y_1}{3} = \frac{8.3 + 2 \times 1.8}{3} = 4.0$

5- Calculer les autres termes de la suite y_n et compléter la ligne y_n du tableau précédent

n	-1	0	1	2	3	4	5	6	7	8	9	10
$t = n T_e$		0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009	0,010
x_n	0	9 sin (0)	9 sin (0,628) 5,3	9 sin (1,257) 8,6	9 sin (1,885) 8,6	9 sin (2.513) 5,3	9 sin (3,142)	9 sin (3,770) -5,3	9 sin (4,398) - 8,6	9 sin (5,027) -8,6	9 sin (5,655) -5,3	9 sin (6,283)
y_n	0	0,0	1,8	4,0	5,5	5,5	3,6	0,7	-2,4	-4,5	-4,7	-3,2

6- Tracer la courbe représentative du signal de sortie sur le graphe précédent Courbe rouge sur le graphique précédent

<u>Exercice 2</u>: Une casserole d'eau initialement à une température de 100° C est placée dans une pièce dont la température est constante et égale à 19° C. On définit la fonction y définie sur \mathbb{R}^+ par : y(t) = température de l'eau en °C, au temps t>0 exprimé en minutes. Les principes de la physique permettent d'établir que la fonction y est solution de l'équation différentielle : 10 y'+y=19 avec comme condition initiale : y(0)=100.

On résout cette ED numériquement en prenant une période d'échantillonnage $T_e=1~\mathrm{mn}.$

1- Donner la relation de récurrence qui permet de calculer y_n en fonction de y_{n-1}

L'E.D. est :
$$10 y'(t) + y(t) = 19$$

En travaillant sur les signaux échantillonnés :

$$10 \; \frac{(y_n - y_{n-1})}{1} + \; y_n = 19$$

Ce qui donne:

$$10 (y_n - y_{n-1}) + y_n = 19$$

$$10 y_n - 10 y_{n-1} + y_n = 19$$

$$11 y_n - 10 y_{n-1} = 19$$

$$11 y_n = 19 + 10 y_{n-1}$$

Et finalement:

$$y_n = \frac{19 + 10 \, y_{n-1}}{11}$$

2- Détailler le calcul de y_1 et y_2 en arrondissant toujours les valeurs au dixième.

Pour
$$n = 0$$
: $y_0 = 100$

Pour
$$n = 1$$
: $y_1 = \frac{19+10 y_0}{11} = \frac{19+10\times100}{11} \approx 92,6$

Pour
$$n = 2$$
: $y_2 = \frac{19+10 y_1}{11} = \frac{19+10\times86,5}{11} \approx 85,9$

3- Calculer les autres termes de la suite y_n pour compléter la ligne y_n du tableau suivant :

n	-1	0	1	2	3	4	5	6	7	8	9	10
$oldsymbol{t} = oldsymbol{n} oldsymbol{T}_e$ en mn		0	1	2	3	4	5	6	7	8	9	10
y_n	0	100	92,6	85,9	79,9	74,3	69,3	64,7	60,6	56,8	53,4	50,2

4- Quelle est la formule de la cellule C4 qui permet le calcul de y_1

La formule à saisir dans la cellule C4 est :

	Α	В	С
1	n	t	yn
3	-1		
	0	0	100
4	1	1	•
5	2	2	
6	3	3	
7	4	4	
8	5	5	
9	6	6	
10	7	7	
11	8	8	
12	9	9	
13	10	10	